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Abstract –In this paper, we propose a proximity-aware cloud service selection system to help application providers to 
deploy their applications in the cloud. Cloud platforms deploy multiple data centers geographically distributed around the world. 
We argue that proximity plays a very important role to improve the application performance when deploying applications in such 
geo-distributed cloud platforms. We design and evaluate the system for automatic selection of cloud infrastructures, in which we not 
only considers the deployment cost, but also takes into account the location of cloud infrastructures, application clients and related 
applications, and the interaction among application components when selecting the cloud infrastructures. Since the solution space is 
very prohibitively large, we propose a stepwise application placement algorithm to address the scalability problems. In our simulated 
experiments, it shows the great performance and high efficiencies of our approach. 
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1. Introduction  
 

In infrastructure as a service (IaaS) clouds, application 
providers rent the virtual machines (VMs) and pay the 
cloud providers based on resource usage to get rid of the 
expensive and tedious infrastructure deployment and 
focus on their business logic. With the popular adoption 
of cloud computing paradigm, many cloud providers are 
emerging in the industry, such as Amazon, Microsoft, 
Google, Rackspace, HP and Terremark, etc.  
 

Among many factors to take into account when 
selecting which data centers to deploy the applications, 
price is the first thing to consider. Different cloud 
providers offer different billing models to their customers. 
Moreover, different types of resources, like CPU and 
network bandwidth, are charged differently. In order to 
reduce the monetary cost, we not only need to compare 
the billing policies of different cloud providers, but 
should also consider the resource requirements of the 
applications. 
 

At the same time, we should also ensure the high 
quality of service (QoS) of the applications. While higher 
capacity and larger bandwidth are certainly the options to 
be considered to improve the application performance, it 
is also very important to take into account the proximity 
when selecting the cloud infrastructures. According to 
[23], there is strong inverse correlation between network 
distance and bandwidth during the interaction between 
the clients and servers. Thus, factoring the proximity into 
the selection of cloud infrastructures can significantly 

reduce the client response time and increase the network 
bandwidth. We consider the following aspects for 
proximity: i) distribution of data centers; ii) distribution 
of Internet clients; iii) dependencies among the 
components; IV) location of related applications.  
 

We design a system to facilitate the selection of cloud 
infrastructures of IaaS cloud platforms. It jointly takes 
into account the price and proximity when selecting the 
cloud infrastructures to minimize the monetary cost and 
meanwhile maintain the high QoS of the applications. We 
formulate this problem as a multi-objective optimization 
problem and show that it is NP-hard. In order to solve the 
scalability issue due to the large number of available data 
centers and possibly the big number of application 
components and related applications, we propose an 
efficient heuristic algorithm to search the solution space, 
which is dubbed stepwise application placement. We 
discuss it in more details in Section 2. 
 

In summary, we address the cloud infrastructure 
selection problem in IaaS platforms and make the 
following contributions: 
 We consider both the price and proximity when 

selecting the cloud infrastructure services.  
 We develop an efficient algorithm to solve the 

scalability issue in the cloud infrastructure selection.  
 We evaluate our system and show that our proposed 

algorithm is very efficient to calculate the placement 
policy with performance very close to the optimality. 

 
2. Background 



Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 417 
 

 

 
2.1 Distribution of data centers 
 

Cloud providers usually deploy multiple data centers 
distributed geographically around the world, allowing the 
applications to be able to reach the global footprints 
according to their business requirements. For example, 
Amazon deploys data centers at North America, Europe 
and Asia [19]. According to [21], all the major cloud 
platforms span multiple states, countries and continents. 
 
2.2 Distribution of Internet clients 
 

Placing the applications in the cloud infrastructures 
that are close to the clients can greatly reduce the client-
perceived response time and increase the traffic 
bandwidth. In order to effectively manage the huge 
amount of client information, we apply the network-
aware clustering to classify the Internet clients into 
groups according to their network-aware prefixes that can 
be obtained from the Border Gateway Protocol (BGP) 
tables [16]. More detailed discussion is at Section 3. 
 
2.3 Dependencies among the components 
 

Modern applications usually consist of multiple 
components interacting with each other. For example, it 
is common practice that web applications have multi-tier 
architectures, including web servers, application servers 
and back-end databases. At each tier, there might be 
multiple replicas for high service reliability and 
scalability. Furthermore, there are some highly 
distributed applications that have many more components 
and provide the services to Internet clients across the 
world, like the content delivery networks (CDNs) [2] and 
multiplayer distributed online games [6, 15], etc. When 
deploying the applications in the cloud platforms, it is 
very important to consider the proximity among the 
application components that interact with each other. 
 
2.4 Location of related applications. 
 

We also need to take into account the location of the 
related applications when selecting the cloud 
infrastructures for an application. It is not uncommon that 
applications communicate with each other. For example, 
the financial systems need to communicate with each 
other for many critical tasks, like money transfer and 
credit card payments. Also, hospitals often share patient 
information and need to communicate with each other. It 
would be preferable to place the applications close to the 
location of related applications to reduce the network 
latency and increase the network bandwidth. 
 
3. Cloud Infrastructure Selection 
 

In this section, we first explain the cloud infrastructure 
selection problem and show the problem hardness. Then 
we propose a heuristic algorithm to solve the problem. 
Finally, we discuss some algorithm variations taking into 
account other elements, such as component replication 
and service reliability, etc. 

 
3.1. Environment 

 
As mentioned above, Internet clients are divided into 

groups, called client clusters (CCs). Clients in the same 
cluster share the same BGP prefix and are close to each 
other [16]. They are treated as a single entity when 
considering the proximity in the selection of the cloud 
infrastructures. We can mine the client information from 
the application server logs, which contain not only the 
client IP addresses, but also other important information, 
like how frequently the clients access the applications. 
Alternatively, client information can also be obtained 
from the logs of the associated authoritative DNS servers 
(For applications that are newly developed, it might be 
hard to know the client IP addresses. In this case, 
application providers can make some estimation at their 
best effort, for example, obtaining the client information 
according to their business relationships and 
characteristics of the applications). In this paper, we 
assume the client distribution is known. 
 

When selecting the cloud infrastructures, we should 
know the resource requirements of all application 
components,  such as CPU, memory, network bandwidth 
and disk  space, to calculate the deployment cost. 
Meanwhile, we also need to know how the application 
components communicate with each other and with other 
related applications. For instance, for three-tier 
applications, when web servers receive requests from 
clients, they usually need to contact the application 
servers which further interact with the backend databases. 
This is different from some existing works which address 
the resource allocation problem for applications in 
isolation, such as [28, 33, 22]. In order to get these 
information, existing application profiling techniques, 
such as [29, 32, 7], can be applied. 
 

The communication pattern among the components as 
well as with other related applications is represented in 
the pattern graph G=(V,E). Each component has a 
corresponding node in the graph G. In particular, the 
nodes that accept requests from Internet clients (such as 
web server component) is referred to as external nodes. 
When one application component Ci interacts with 
another component Cj , an edge e(Ci;Cj) would be added 
between the Ci and Cj . For each edge, there would be a 
weight associated with it, which is the volume of 
interactions between the two components in order to 
serve a single client request. The larger the weight is, the 
more coupled the components are. We assume that the 
pattern graph is a directed acyclic graph (DAG), since if 
there is a cycle there, then the clients would never get the 
response from the applications. In addition, we also 
simply assume that the pattern graph is a connected graph 
based on the observation that our modeling and proposed 
algorithms discussed in the remaining sections can be 
applied without change for each isolated subgraph. 
Section 4.4 has more detailed discussion about this. 
 

In addition, it is necessary to know the distances 
between the cloud infrastructures and the client clusters 
as well as the distance among the cloud infrastructures 



Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 418 
 

 

after  obtaining the location information of them. In order 
for that, we can simply allocate a dummy virtual machine 
at each data center and get the network distances from 
each data center to all the client clusters as well as the  
distances among the data centers by running ”ping” 
command from these dummy virtual machines. Since the 
distance information is relatively very stable, this kind of 
measurement can be conducted very infrequent, say, 
every month. Also, the dummy virtual machines are only 
used for the simple measurement, and do not have much 
resource consumption. Thus this method is simple and 
cheap. There are also many existing techniques for 
measuring or estimating the distance between hosts and 
can also be applied in our system, like [10] and [12]. 
 
3.2. Problem Statement 
 

The pattern graph mentioned above is extended to 
include the client clusters. Figure 1 shows an example. 
Each client clusters (only three, CC1, CC2 and CC3 are 
shown in the figure) and related application (like node F 
and G) have a node in the graph, dubbed client cluster 
node and application node respectively. An edge is added 
from each client cluster node to the external node (like 
node A). Also, if a component visits other component ors 
related applications, an edge is added between them, like 
the edge e(A;B) and e(B; F). A value is associated with 
each edge, which is the distance between the nodes. Note 
that, there is another value on the edges between the 
components indicating the volume of the interaction 
between the components, which is not shown in the 
figure. 
 

Assume there are M components of the application. 
Each component COMPk is associated with the resource 
requirements expressed as {CPU, Memory, Disk, 
Network}. The external node is denoted as COMPK0 
(For simplicity, we assume that applications has only one 
external component receiving requests from Internet 
clients. Section 4 discusses the case when components 
are replicated.) . Also assume that there are N cloud 
providers, each with di data centers. The total number of 
data centers is W = . Let COSTk,i be the cost of 
deploying component COMPk at the data center DCi. P 
denotes the placement matrix of the components. If 
component COMPk is deployed at the data center DCi, 
then Pk,i = 1; otherwise, Pk,i = 0, for k = 1,2, …, M, and i = 
1, 2, …,W. Among all the nodes in the graph, the location 
of client cluster nodes and related application nodes are 
known and referred to as fixed nodes, while others are 
called unfixed nodes (node A, B, C and D in the figure 1 
for instance). The goal is the find a matrix P to place 
unfixed nodes satisfying their resource requirements. 
 

The first objective of the problem is to deploy the 
unfixed nodes to the cloud infrastructures to minimize the 
overall deployment cost COST, which is: 

 
  

Assume there are L client clusters and R related   
applications. Let the distance between the client cluster 
CCl and data center DCj be DISTl,j, the distance between 
data center DCi and data center DCj be DISTi,j and the 
distance between the data center DCi and the related 
application RAPr be DISTi,r. Also, let Ql denote the 
request rate for the application from the client cluster CCl, 
and Vk1,k2 denote the volume of communication between 
component COMPk1 and COMPk2 to serve a single 
request. The second objective of the problem is to deploy 
the unfixed nodes to minimize the overall network 
distance, DIST, among all the nodes in the graph for all 
the requests, which is: 
 

 
Figure 1 System Graph 

 

 
 

This is a multi-objective optimization problem: 
deploying all the components at the cheapest cloud 
infrastructure would incur smallest cost, but can lead to 
larger user-perceived response time, which would hurt 
the business. Our system allows the application providers 
to make the trade-off according to their recognition of the 
importance of the deployment cost and proximity by 
adding two weight parameters: α and β. The multi-
objective optimization problem is transferred to the single 
objective problem to minimize the overhead score η: 
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Noticing the binary choice of each element in the 
placement matrix P, it is a variation of the 0-1 integer 
linear programming problem, which is NP-hard [5]. The 
complexity of this problem is O(WM), which is 
prohibitively expensive. In this paper, we propose a 
stepwise application placement algorithm to solve this 
problem, which is elaborated at section 3.2. 
 
3.2. Stepwise Application Placement 
 

The nodes in the graph are divided into three 
categories: fixed nodes, semi-fixed nodes and unfixed 
nodes. Fixed nodes refer to the nodes whose locations are 
already known, like the client cluster nodes and the 
related application nodes F and G in figure 1. Semi-fixed 
nodes are the nodes that are adjacent to at least one fixed 
node, like the node A, B and D in figure 1. The remaining 
nodes are unfixed nodes, like node C in figure 1. Let the ξ 
be the set of fixed nodes, Ψ the set of semi-fixed nodes 
and θ the set of unfixed nodes. We need to decide where 
to deploy the corresponding components for nodes in Ψ 
and θ. 
 

Based on the observation that nodes in Ψ need to be 
close to the fixed nodes to which they are adjacent, we 
propose the stepwise component placement algorithm, in 
which nodes in Ψ are deployed first and only one of them 
is considered at a time. Whenever the location of a node 
in Ψ is decided, it is removed from Ψ and put into ξ. 
Meanwhile its neighboring unfixed nodes in θ becomes 
semi-fixed nodes and are transferred to set Ψ. 
 

When deciding how to deploy the components for 
nodes in Ψ, we only care about the location of the fixed 
nodes that are adjacent to them, as well as the 
deployment cost. For a node in Ψ, each data center DCj 

would obtain a overhead score according to the formula 
(3) assuming the component of this node is deploy there 
(in this case, COST and DIST only count the component 
of this particular node deployed at DCj, in stead of the 
cost and network distance of all components as formula 
(1) and (2)). Note that, in order for deployment cost and 
proximity to be comparable, both COST and DIST are 
normalized by their maximum value respectively across 
all data centers respectively before they are combined 
with the weight α and β to calculate the overhead score. 

The data center with the smallest overhead score would 
be selected to deploy the component. 
 

One important issue is that different orders in which 
we deploy the components of nodes in Ψ can result in 
significantly different placement policies. Take the 
system graph in figure 1 for example, both node A and B 
are in set Ψ. If we select the cloud infrastructure for node 
A first, then node A would be place close to clients. And 
node B would be placed depending on the location of 
both node A and F. But if node B is selected before node 
A, then the location of node B only relies on the location 
of the node F, and the location of node A depends on the 
location of the clients and the node B. In order to address 
this issue, we prioritize the nodes in Ψ the when deciding 
which one to deploy first. The priority of each node in Ψ 
is based on the number of fixed nodes it connects to 
directly and the volume of communication between them. 
For example, node A would have higher priority than 
node B since it connects to large number of client cluster 
nodes. Nodes with equal priority are deployed at random 
order. 
 

The details of the stepwise application placement 
algorithm are as shown in figure 2 and 3. 
 
4. Placement Variations 
 
The step-wise component placement algorithm in Section 
3.2 considers only the deployment cost and proximity. 
While these two aspects are the critical factors to 
consider in the selection of cloud infrastructures, 
application providers may consider more in real life. For 
example, some application might require some or all the 
components to be in the same VLAN, which is supported 
by some cloud providers. However, if these components 
are distributed among different cloud providers, no single  

 
entity (it is very hard if not impossible for cloud 
providers to coordinate) would be able to configure 
VLAN for these components. In this case, application 
providers would choose to deploy the components across 
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data centers belonging to a single cloud provider. Also, 
things like reliability credit of cloud providers would also 
affect the decision making of application providers In 
addition, some components, like the web server 
component, play such an important role for the 
application that it is better to replicate them across 
multiple locations for high reliability and good 
performance. In this case, we need to decide how to place 
the replicas at different data centers (note that, the 
algorithm described at Section 3.2 would put all the 
replicas of a component in the same location where the 
overall cost is smallest.). In this section, we discuss and 
explain how to integrate these aspects into the stepwise 
application placement.  
 
4.1 Single Cloud Provider 
 

When application providers want to deploy the 
applications within a single cloud provider, only very 
simple modification is needed to integrate this 
requirement into the stepwise application placement 
algorithm. Instead of going through all the data centers of 
all the cloud providers (refer to line 2 of figure 3), it only 
checks the data centers of a single cloud provider. In 
other words, when deciding the deployment of the 
application components, only one cloud provider is 
considered at a time. After deciding the deployment of 
the application components in a cloud provider, an 
overhead score value (which is basically the sum of the 
final cur_score in figure 3 of all the components) is 
calculated for that cloud provider. After trying all the 
cloud providers, the one with the smallest overhead score 
value is selected to deploy the application. 
 
4.2 Cloud Provider Reliability 
 

It is also simple to integrate the reliability credit 
(assuming the higher the better) of the cloud providers 
into the stepwise application placement algorithm. We 
can just extend the formula (3) by introducing the 
reliability credit, CREDIT, of the cloud providers as well 
as the weight parameter. The extended formula would 
like follows. Again, CREDIT is normalized. 
 

 
 
4.3 Component Replication 
 

When trying to place the replicas of a component at 
different data centers, two options can be applied. In the 
first option, we can simply get the top b best candidate 
data centers and place the replicas there. Here b is the 
preassigned number of replicas of the component. In 
order to do that, the deployNode(n) method at Figure 3 
can be called b times, excluding the data centers that have 
already been selected as the candidate data centers each 
time. When updating the status of its neighboring nodes, 
the component is marked to be placed at the best 
candidate data center. One problem with this method is 
that, only the replica placed at the best data center would 

impact the placement of the neighboring components. For 
example, suppose the two replicas of the component A in 
the Figure 1 are placed at the data center DC1 and DC2, 
where DC1 is the best candidate data center for the 
component A. Then the placement of component B 
depends on the location of DC1 and the component F, not 
DC2.  
 

In order to avoid this limitation, as an alternative 
option, we can put all the replicas as components in the 
pattern graph, and all replica nodes of the same 
component have the same connectivity. When calling the 
deployNode(n) method, we also exclude the data centers 
that have already been placed with replicas of the 
component. But all the replica components would impact 
the placement of neighboring components, since all of 
them are connected to each neighboring component. 
 
4.4 Isolated Components 
 

By now, we assume that the system graph is a 
connected graph. However, in reality, this might not 
always be the case. For example, an enterprise 
application can be deployed at multiple branches, and 
some branches never interact directly with each other. In 
order to address this issue, we can model the problem for 
each isolated subgraph in the same way as in Section 3.2 
and apply the stepwise application placement on them 
respectively. In other words, the components in each 
subgraph are considered as an ”independent application”.  
 
5. Evaluation 
 

In this section, we discuss the evaluation of our system. 
We compare the proposed stepwise cloud selection 
algorithm with two baseline algorithms: random selection 
and optimal selection. We conduct simulation-driven 
experiments to measure the performance and the 
execution time of the three algorithms. 
 
5.1 Environment 
 

In order to evaluate our system, we collect proximity 
information from real systems and build a cloud model. 
Also, we generate DAG graphs with varying size to 
represent the relationship among application components 
as well as the related applications. In this subsection, we 
explain then in details. 
 
Cloud model. We extract the IP addresses from the 
Gnutella peers at the University of Oregon [3] and get 
about 157803 pingable ones, which are used to mimic the 
locations of client clusters. Meanwhile, we allocate 20 
PlanetLab nodes from the [4] to represent the locations of 
data centers. From each PlanetLab node, we obtain the 
network latency to each Gnutella peer by conducting the 
"ping" command. We get about 100546 IP addresses of 
Gnutella peers that are pingable from all the PlanetLab 
nodes. In addition, we get the network latency between 
each pair of PlanetLab nodes by asking all the PlanetLab 
nodes to "ping" each other. 
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In our basic cloud model, there are 100546 client 
clusters and 20 data centers. We use the network latencies 
between the 20 PlanetLab nodes and the 100546 Gnutella 
peers as the proximity information between the data 
centers and client clusters, and ones among the 20 
PlanetLab nodes as the proximity information among the 
data centers. According to the [16], there are about 400k 
client clusters around 2000. Thus we believe the 100546 
client clusters are representative for the real life. When 
evaluating the scalability of our system, we randomly 
generate the network latency between the data centers 
and client clusters as well as among the data centers when 
the number of data centers is larger than 20. 
 
DAG generation. We randomly generate DAG graphs to 
represent the relationship among the application 
components and related applications based on the tool [1]. 
We assume that the each component is related to at least 
one other component and remove the isolated nodes (no 
associated edges) in the generated DAG graphs. 
 

Also, as mentioned before, we assume that all other 
application components are accessible in one way or 
another3. Thus, only the node representing the web server 
that receives requests from Internet clients in the DAG 
graph has noninbound edges. In order for that, we 
randomly select a noninbound node in the generated 
DAG graph to represent the web server node, and add an 
edge from it to all other non-inbound nodes. 
 
Baseline algorithms.We compare our proposed stepwise 
cloud selection algorithm with two other algorithms: 
random selection and optimal selection. In random 
selection algorithm, we deploy each application 
component to a randomly selected data center. This 
algorithm is very efficient in terms of computation 
overhead, but may incur high cost and bad performance 
since it is totally unaware of the deployment cost and the 
proximity. In the optimal selection algorithm, we check 
each placement policy and choose the one with the lowest 
overall score. This algorithm is the optimal tradeoff 
regarding the deployment cost and performance, but is 
prohibitively expensive in computation overhead. 
 
Setup. Our experiments are conducted in a 4-core virtual 
machine running on a host with Intel Xeon(R) 3.20GHz 
CPU and 6G memory.  
 
5.2 Policy Performance 
 

When comparing the stepwise cloud selection 
algorithm with the algorithms mentioned above, we want 
to see how the number of application components and the 
number of data centers impact the results. We keep one 
value fixed while increasing the other value in our 
experiments. For example, in the first set of experiment, 
the number of the application component increases from 
4 to 10, with the number of the data centers constantly to 
be 10. Also, in the second set of experiments, the number 
of application component is fixed to be 8, while the 
number of data centers varies from 10 to 20. The upper 
bound of the number of application components and data 
centers in the experiments is determined by the large 

execution time of the optimal placement algorithm 
(Section IV-C shows results on this). In addition, in order 
to see how the weight of the deployment cost and the 
proximity would affect the results, we conduct these 
experiments in three different cases, each with weights -
 as 0.3-0.7, 0.5-0.5 and 0.7-0.3 respectively. 
 

Figure 4-9 show the performance of different 
placement algorithms. We can see that the performance 
of the stepwise application placement algorithm is much 
better than the random placement and is very close to the 
optimality in many cases. Another interesting observation 
is that the good performance persists regardless of the 
weights for deployment cost and proximity. 
 
5.3. Scalability  
 

In this section, we evaluate the scalability of different 
algorithms by showing the execution time. The 
methodology in the experiments is the same with the 
Section IV-B. Figure 10 and 15 show the execution time 
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Fig 4. Performance varying component numbers (0.3-0.7) 
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Fig 5. Performance varying component numbers (0.5-0.5) 
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Fig 6. Performance varying component numbers (0.7-0.3) 
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Fig 7. Performance varying DC numbers (0.3-0.7) 
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Fig 8. Performance varying DC numbers (0.5-0.5) 
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Fig 9. Performance varying DC numbers (0.7-0.3) 
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Fig 10. Run time varying component numbers (0.3-0.7) 
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Fig 11. Run time varying component numbers (0.5-0.5) 
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Fig 12. Run time varying component numbers (0.7-0.3) 
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Fig 13. Run time varying DC numbers (0.3-0.7) 
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Fig 14. Run time varying DC numbers (0.3-0.7) 
 

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10  11  12  13  14  15  16  17  18  19  20

T
im

e 
(m

il
li

o
n

 s
ec

o
n

d
s)

Number of dconents

random placement (0.7-0.3)
stepwise placement (0.7-0.3)
optimal placement (0.7-0.3)

 
 

Fig 15. Run time varying DC numbers (0.3-0.7) 
 
of the algorithms. We can see that the execution time of 
the optimal placement algorithm is exponential (noting 
the log scale of the figures), while the execution time of 
the stepwise placement algorithm stays near 1 million 
second, similar with the random placement algorithm. 
Thus, the proposed stepwise placement algorithm is very 
efficient in calculating the placement policies for the 
selection of cloud infrastructures.  
 

V. RELATED WORK Cloud computing has obtained 
tremendous attention recently. Among the large volume 
of works, several of them focus on the comparing and 
selecting the cloud services. For example, the work in [17, 
18] compared the service performance of four major 
cloud providers to help the customers choose cloud 
services. In [13], a conceptional framework is proposed 
to compare the cloud services based on the performance 
of virtual machines. Unlike their work, we take the 
proximity into account and aim to build a system to select 
the cloud infrastructures automatically for customers. In 
[34], we consider the proximity in the cloud selection and 
did some preliminary investigation  of the problem. 
 

Meanwhile, authors in [24] introduced a mathematical 
formulation and method of the cloud service selection 
based on multiple abstract criteria. Different from it, our 
work intends to develop a real system to automatically 
selection the infrastructures in IaaS cloud platforms. In 
[11], an approach utilizing the analytic hierarchy process 
is proposed to select the services for software as a service 
cloud. Our work differentiate from them in that we focus 

on the infrastructure as a service cloud, in which the 
proximity should be considered explicitly, while in 
software as a service cloud, only the overall service 
quality needs to be considered. Finally, many works 
focus on the storage issues, like storage selection, 
security, storage backup and deduplication etc., such as 
[25, 14, 8, 30], and network issues, like [26, 20]. 
Different from them, this work considers the general 
applications. The work in [35] proposes a unified 
approach for the application placement and demand 
distribution problems in global cloud and shows great 
promises in the optimization of the cloud platforms. 
 

In addition, to our knowledge, this work is the first 
one to consider the proximity and interaction between 
application components and different applications when 
making the selection of cloud services. 
 
6. Conclusion and future work 
 

In this paper, we design and evaluate our system for 
cloud service selection in IaaS platforms. We not only 
consider the deployment cost, but also take into account 
the location of cloud infrastructures, application clients, 
related applications as well as the interaction among the 
application components. Through experiments, we show 
that our proposed system is very efficient to calculate a 
placement policy with performance very close to the 
optimality. 
 

In our future work, it is interesting to investigate more 
complex methodologies, such as genetic algorithms [9] 
and neural networks [27, 31], to solve the problem. Also, 
we would consider the energy-related problems in cloud 
environment.  
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