
Advances in Computer Science and its Applications (ACSA) 416
Vol. 2, No. 3, 2013, ISSN 2166-2924
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

1The preliminary version of this paper appeared in the 2013 International Conference on Collaboration Technologies and
Systems (CTS 2013) [34]

Towards Proximity-aware Application Deployment in Geo-
distributed Clouds1

1Hangwei Qian and 2 Qixin Wang

1VMware Inc., CA, USA
2 University of Southern California, CA, USA

Email: qianhangwei@gmail.com

Abstract –In this paper, we propose a proximity-aware cloud service selection system to help application providers to
deploy their applications in the cloud. Cloud platforms deploy multiple data centers geographically distributed around the world.
We argue that proximity plays a very important role to improve the application performance when deploying applications in such
geo-distributed cloud platforms. We design and evaluate the system for automatic selection of cloud infrastructures, in which we not
only considers the deployment cost, but also takes into account the location of cloud infrastructures, application clients and related
applications, and the interaction among application components when selecting the cloud infrastructures. Since the solution space is
very prohibitively large, we propose a stepwise application placement algorithm to address the scalability problems. In our simulated
experiments, it shows the great performance and high efficiencies of our approach.

Keywords –Cloud Computing, Cloud Selection, Proximity-aware

1. Introduction

In infrastructure as a service (IaaS) clouds, application
providers rent the virtual machines (VMs) and pay the
cloud providers based on resource usage to get rid of the
expensive and tedious infrastructure deployment and
focus on their business logic. With the popular adoption
of cloud computing paradigm, many cloud providers are
emerging in the industry, such as Amazon, Microsoft,
Google, Rackspace, HP and Terremark, etc.

Among many factors to take into account when
selecting which data centers to deploy the applications,
price is the first thing to consider. Different cloud
providers offer different billing models to their customers.
Moreover, different types of resources, like CPU and
network bandwidth, are charged differently. In order to
reduce the monetary cost, we not only need to compare
the billing policies of different cloud providers, but
should also consider the resource requirements of the
applications.

At the same time, we should also ensure the high
quality of service (QoS) of the applications. While higher
capacity and larger bandwidth are certainly the options to
be considered to improve the application performance, it
is also very important to take into account the proximity
when selecting the cloud infrastructures. According to
[23], there is strong inverse correlation between network
distance and bandwidth during the interaction between
the clients and servers. Thus, factoring the proximity into
the selection of cloud infrastructures can significantly

reduce the client response time and increase the network
bandwidth. We consider the following aspects for
proximity: i) distribution of data centers; ii) distribution
of Internet clients; iii) dependencies among the
components; IV) location of related applications.

We design a system to facilitate the selection of cloud
infrastructures of IaaS cloud platforms. It jointly takes
into account the price and proximity when selecting the
cloud infrastructures to minimize the monetary cost and
meanwhile maintain the high QoS of the applications. We
formulate this problem as a multi-objective optimization
problem and show that it is NP-hard. In order to solve the
scalability issue due to the large number of available data
centers and possibly the big number of application
components and related applications, we propose an
efficient heuristic algorithm to search the solution space,
which is dubbed stepwise application placement. We
discuss it in more details in Section 2.

In summary, we address the cloud infrastructure
selection problem in IaaS platforms and make the
following contributions:
 We consider both the price and proximity when

selecting the cloud infrastructure services.
 We develop an efficient algorithm to solve the

scalability issue in the cloud infrastructure selection.
 We evaluate our system and show that our proposed

algorithm is very efficient to calculate the placement
policy with performance very close to the optimality.

2. Background

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 417

2.1 Distribution of data centers

Cloud providers usually deploy multiple data centers
distributed geographically around the world, allowing the
applications to be able to reach the global footprints
according to their business requirements. For example,
Amazon deploys data centers at North America, Europe
and Asia [19]. According to [21], all the major cloud
platforms span multiple states, countries and continents.

2.2 Distribution of Internet clients

Placing the applications in the cloud infrastructures
that are close to the clients can greatly reduce the client-
perceived response time and increase the traffic
bandwidth. In order to effectively manage the huge
amount of client information, we apply the network-
aware clustering to classify the Internet clients into
groups according to their network-aware prefixes that can
be obtained from the Border Gateway Protocol (BGP)
tables [16]. More detailed discussion is at Section 3.

2.3 Dependencies among the components

Modern applications usually consist of multiple
components interacting with each other. For example, it
is common practice that web applications have multi-tier
architectures, including web servers, application servers
and back-end databases. At each tier, there might be
multiple replicas for high service reliability and
scalability. Furthermore, there are some highly
distributed applications that have many more components
and provide the services to Internet clients across the
world, like the content delivery networks (CDNs) [2] and
multiplayer distributed online games [6, 15], etc. When
deploying the applications in the cloud platforms, it is
very important to consider the proximity among the
application components that interact with each other.

2.4 Location of related applications.

We also need to take into account the location of the
related applications when selecting the cloud
infrastructures for an application. It is not uncommon that
applications communicate with each other. For example,
the financial systems need to communicate with each
other for many critical tasks, like money transfer and
credit card payments. Also, hospitals often share patient
information and need to communicate with each other. It
would be preferable to place the applications close to the
location of related applications to reduce the network
latency and increase the network bandwidth.

3. Cloud Infrastructure Selection

In this section, we first explain the cloud infrastructure
selection problem and show the problem hardness. Then
we propose a heuristic algorithm to solve the problem.
Finally, we discuss some algorithm variations taking into
account other elements, such as component replication
and service reliability, etc.

3.1. Environment

As mentioned above, Internet clients are divided into

groups, called client clusters (CCs). Clients in the same
cluster share the same BGP prefix and are close to each
other [16]. They are treated as a single entity when
considering the proximity in the selection of the cloud
infrastructures. We can mine the client information from
the application server logs, which contain not only the
client IP addresses, but also other important information,
like how frequently the clients access the applications.
Alternatively, client information can also be obtained
from the logs of the associated authoritative DNS servers
(For applications that are newly developed, it might be
hard to know the client IP addresses. In this case,
application providers can make some estimation at their
best effort, for example, obtaining the client information
according to their business relationships and
characteristics of the applications). In this paper, we
assume the client distribution is known.

When selecting the cloud infrastructures, we should
know the resource requirements of all application
components, such as CPU, memory, network bandwidth
and disk space, to calculate the deployment cost.
Meanwhile, we also need to know how the application
components communicate with each other and with other
related applications. For instance, for three-tier
applications, when web servers receive requests from
clients, they usually need to contact the application
servers which further interact with the backend databases.
This is different from some existing works which address
the resource allocation problem for applications in
isolation, such as [28, 33, 22]. In order to get these
information, existing application profiling techniques,
such as [29, 32, 7], can be applied.

The communication pattern among the components as
well as with other related applications is represented in
the pattern graph G=(V,E). Each component has a
corresponding node in the graph G. In particular, the
nodes that accept requests from Internet clients (such as
web server component) is referred to as external nodes.
When one application component Ci interacts with
another component Cj , an edge e(Ci;Cj) would be added
between the Ci and Cj . For each edge, there would be a
weight associated with it, which is the volume of
interactions between the two components in order to
serve a single client request. The larger the weight is, the
more coupled the components are. We assume that the
pattern graph is a directed acyclic graph (DAG), since if
there is a cycle there, then the clients would never get the
response from the applications. In addition, we also
simply assume that the pattern graph is a connected graph
based on the observation that our modeling and proposed
algorithms discussed in the remaining sections can be
applied without change for each isolated subgraph.
Section 4.4 has more detailed discussion about this.

In addition, it is necessary to know the distances
between the cloud infrastructures and the client clusters
as well as the distance among the cloud infrastructures

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 418

after obtaining the location information of them. In order
for that, we can simply allocate a dummy virtual machine
at each data center and get the network distances from
each data center to all the client clusters as well as the
distances among the data centers by running ”ping”
command from these dummy virtual machines. Since the
distance information is relatively very stable, this kind of
measurement can be conducted very infrequent, say,
every month. Also, the dummy virtual machines are only
used for the simple measurement, and do not have much
resource consumption. Thus this method is simple and
cheap. There are also many existing techniques for
measuring or estimating the distance between hosts and
can also be applied in our system, like [10] and [12].

3.2. Problem Statement

The pattern graph mentioned above is extended to
include the client clusters. Figure 1 shows an example.
Each client clusters (only three, CC1, CC2 and CC3 are
shown in the figure) and related application (like node F
and G) have a node in the graph, dubbed client cluster
node and application node respectively. An edge is added
from each client cluster node to the external node (like
node A). Also, if a component visits other component ors
related applications, an edge is added between them, like
the edge e(A;B) and e(B; F). A value is associated with
each edge, which is the distance between the nodes. Note
that, there is another value on the edges between the
components indicating the volume of the interaction
between the components, which is not shown in the
figure.

Assume there are M components of the application.
Each component COMPk is associated with the resource
requirements expressed as {CPU, Memory, Disk,
Network}. The external node is denoted as COMPK0
(For simplicity, we assume that applications has only one
external component receiving requests from Internet
clients. Section 4 discusses the case when components
are replicated.) . Also assume that there are N cloud
providers, each with di data centers. The total number of
data centers is W = . Let COSTk,i be the cost of
deploying component COMPk at the data center DCi. P
denotes the placement matrix of the components. If
component COMPk is deployed at the data center DCi,
then Pk,i = 1; otherwise, Pk,i = 0, for k = 1,2, …, M, and i =
1, 2, …,W. Among all the nodes in the graph, the location
of client cluster nodes and related application nodes are
known and referred to as fixed nodes, while others are
called unfixed nodes (node A, B, C and D in the figure 1
for instance). The goal is the find a matrix P to place
unfixed nodes satisfying their resource requirements.

The first objective of the problem is to deploy the
unfixed nodes to the cloud infrastructures to minimize the
overall deployment cost COST, which is:

Assume there are L client clusters and R related
applications. Let the distance between the client cluster
CCl and data center DCj be DISTl,j, the distance between
data center DCi and data center DCj be DISTi,j and the
distance between the data center DCi and the related
application RAPr be DISTi,r. Also, let Ql denote the
request rate for the application from the client cluster CCl,
and Vk1,k2 denote the volume of communication between
component COMPk1 and COMPk2 to serve a single
request. The second objective of the problem is to deploy
the unfixed nodes to minimize the overall network
distance, DIST, among all the nodes in the graph for all
the requests, which is:

Figure 1 System Graph

This is a multi-objective optimization problem:
deploying all the components at the cheapest cloud
infrastructure would incur smallest cost, but can lead to
larger user-perceived response time, which would hurt
the business. Our system allows the application providers
to make the trade-off according to their recognition of the
importance of the deployment cost and proximity by
adding two weight parameters: α and β. The multi-
objective optimization problem is transferred to the single
objective problem to minimize the overhead score η:

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 419

Noticing the binary choice of each element in the
placement matrix P, it is a variation of the 0-1 integer
linear programming problem, which is NP-hard [5]. The
complexity of this problem is O(WM), which is
prohibitively expensive. In this paper, we propose a
stepwise application placement algorithm to solve this
problem, which is elaborated at section 3.2.

3.2. Stepwise Application Placement

The nodes in the graph are divided into three
categories: fixed nodes, semi-fixed nodes and unfixed
nodes. Fixed nodes refer to the nodes whose locations are
already known, like the client cluster nodes and the
related application nodes F and G in figure 1. Semi-fixed
nodes are the nodes that are adjacent to at least one fixed
node, like the node A, B and D in figure 1. The remaining
nodes are unfixed nodes, like node C in figure 1. Let the ξ
be the set of fixed nodes, Ψ the set of semi-fixed nodes
and θ the set of unfixed nodes. We need to decide where
to deploy the corresponding components for nodes in Ψ
and θ.

Based on the observation that nodes in Ψ need to be
close to the fixed nodes to which they are adjacent, we
propose the stepwise component placement algorithm, in
which nodes in Ψ are deployed first and only one of them
is considered at a time. Whenever the location of a node
in Ψ is decided, it is removed from Ψ and put into ξ.
Meanwhile its neighboring unfixed nodes in θ becomes
semi-fixed nodes and are transferred to set Ψ.

When deciding how to deploy the components for
nodes in Ψ, we only care about the location of the fixed
nodes that are adjacent to them, as well as the
deployment cost. For a node in Ψ, each data center DCj

would obtain a overhead score according to the formula
(3) assuming the component of this node is deploy there
(in this case, COST and DIST only count the component
of this particular node deployed at DCj, in stead of the
cost and network distance of all components as formula
(1) and (2)). Note that, in order for deployment cost and
proximity to be comparable, both COST and DIST are
normalized by their maximum value respectively across
all data centers respectively before they are combined
with the weight α and β to calculate the overhead score.

The data center with the smallest overhead score would
be selected to deploy the component.

One important issue is that different orders in which
we deploy the components of nodes in Ψ can result in
significantly different placement policies. Take the
system graph in figure 1 for example, both node A and B
are in set Ψ. If we select the cloud infrastructure for node
A first, then node A would be place close to clients. And
node B would be placed depending on the location of
both node A and F. But if node B is selected before node
A, then the location of node B only relies on the location
of the node F, and the location of node A depends on the
location of the clients and the node B. In order to address
this issue, we prioritize the nodes in Ψ the when deciding
which one to deploy first. The priority of each node in Ψ
is based on the number of fixed nodes it connects to
directly and the volume of communication between them.
For example, node A would have higher priority than
node B since it connects to large number of client cluster
nodes. Nodes with equal priority are deployed at random
order.

The details of the stepwise application placement
algorithm are as shown in figure 2 and 3.

4. Placement Variations

The step-wise component placement algorithm in Section
3.2 considers only the deployment cost and proximity.
While these two aspects are the critical factors to
consider in the selection of cloud infrastructures,
application providers may consider more in real life. For
example, some application might require some or all the
components to be in the same VLAN, which is supported
by some cloud providers. However, if these components
are distributed among different cloud providers, no single

entity (it is very hard if not impossible for cloud
providers to coordinate) would be able to configure
VLAN for these components. In this case, application
providers would choose to deploy the components across

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 420

data centers belonging to a single cloud provider. Also,
things like reliability credit of cloud providers would also
affect the decision making of application providers In
addition, some components, like the web server
component, play such an important role for the
application that it is better to replicate them across
multiple locations for high reliability and good
performance. In this case, we need to decide how to place
the replicas at different data centers (note that, the
algorithm described at Section 3.2 would put all the
replicas of a component in the same location where the
overall cost is smallest.). In this section, we discuss and
explain how to integrate these aspects into the stepwise
application placement.

4.1 Single Cloud Provider

When application providers want to deploy the
applications within a single cloud provider, only very
simple modification is needed to integrate this
requirement into the stepwise application placement
algorithm. Instead of going through all the data centers of
all the cloud providers (refer to line 2 of figure 3), it only
checks the data centers of a single cloud provider. In
other words, when deciding the deployment of the
application components, only one cloud provider is
considered at a time. After deciding the deployment of
the application components in a cloud provider, an
overhead score value (which is basically the sum of the
final cur_score in figure 3 of all the components) is
calculated for that cloud provider. After trying all the
cloud providers, the one with the smallest overhead score
value is selected to deploy the application.

4.2 Cloud Provider Reliability

It is also simple to integrate the reliability credit
(assuming the higher the better) of the cloud providers
into the stepwise application placement algorithm. We
can just extend the formula (3) by introducing the
reliability credit, CREDIT, of the cloud providers as well
as the weight parameter. The extended formula would
like follows. Again, CREDIT is normalized.

4.3 Component Replication

When trying to place the replicas of a component at
different data centers, two options can be applied. In the
first option, we can simply get the top b best candidate
data centers and place the replicas there. Here b is the
preassigned number of replicas of the component. In
order to do that, the deployNode(n) method at Figure 3
can be called b times, excluding the data centers that have
already been selected as the candidate data centers each
time. When updating the status of its neighboring nodes,
the component is marked to be placed at the best
candidate data center. One problem with this method is
that, only the replica placed at the best data center would

impact the placement of the neighboring components. For
example, suppose the two replicas of the component A in
the Figure 1 are placed at the data center DC1 and DC2,
where DC1 is the best candidate data center for the
component A. Then the placement of component B
depends on the location of DC1 and the component F, not
DC2.

In order to avoid this limitation, as an alternative
option, we can put all the replicas as components in the
pattern graph, and all replica nodes of the same
component have the same connectivity. When calling the
deployNode(n) method, we also exclude the data centers
that have already been placed with replicas of the
component. But all the replica components would impact
the placement of neighboring components, since all of
them are connected to each neighboring component.

4.4 Isolated Components

By now, we assume that the system graph is a
connected graph. However, in reality, this might not
always be the case. For example, an enterprise
application can be deployed at multiple branches, and
some branches never interact directly with each other. In
order to address this issue, we can model the problem for
each isolated subgraph in the same way as in Section 3.2
and apply the stepwise application placement on them
respectively. In other words, the components in each
subgraph are considered as an ”independent application”.

5. Evaluation

In this section, we discuss the evaluation of our system.
We compare the proposed stepwise cloud selection
algorithm with two baseline algorithms: random selection
and optimal selection. We conduct simulation-driven
experiments to measure the performance and the
execution time of the three algorithms.

5.1 Environment

In order to evaluate our system, we collect proximity
information from real systems and build a cloud model.
Also, we generate DAG graphs with varying size to
represent the relationship among application components
as well as the related applications. In this subsection, we
explain then in details.

Cloud model. We extract the IP addresses from the
Gnutella peers at the University of Oregon [3] and get
about 157803 pingable ones, which are used to mimic the
locations of client clusters. Meanwhile, we allocate 20
PlanetLab nodes from the [4] to represent the locations of
data centers. From each PlanetLab node, we obtain the
network latency to each Gnutella peer by conducting the
"ping" command. We get about 100546 IP addresses of
Gnutella peers that are pingable from all the PlanetLab
nodes. In addition, we get the network latency between
each pair of PlanetLab nodes by asking all the PlanetLab
nodes to "ping" each other.

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 421

In our basic cloud model, there are 100546 client
clusters and 20 data centers. We use the network latencies
between the 20 PlanetLab nodes and the 100546 Gnutella
peers as the proximity information between the data
centers and client clusters, and ones among the 20
PlanetLab nodes as the proximity information among the
data centers. According to the [16], there are about 400k
client clusters around 2000. Thus we believe the 100546
client clusters are representative for the real life. When
evaluating the scalability of our system, we randomly
generate the network latency between the data centers
and client clusters as well as among the data centers when
the number of data centers is larger than 20.

DAG generation. We randomly generate DAG graphs to
represent the relationship among the application
components and related applications based on the tool [1].
We assume that the each component is related to at least
one other component and remove the isolated nodes (no
associated edges) in the generated DAG graphs.

Also, as mentioned before, we assume that all other
application components are accessible in one way or
another3. Thus, only the node representing the web server
that receives requests from Internet clients in the DAG
graph has noninbound edges. In order for that, we
randomly select a noninbound node in the generated
DAG graph to represent the web server node, and add an
edge from it to all other non-inbound nodes.

Baseline algorithms.We compare our proposed stepwise
cloud selection algorithm with two other algorithms:
random selection and optimal selection. In random
selection algorithm, we deploy each application
component to a randomly selected data center. This
algorithm is very efficient in terms of computation
overhead, but may incur high cost and bad performance
since it is totally unaware of the deployment cost and the
proximity. In the optimal selection algorithm, we check
each placement policy and choose the one with the lowest
overall score. This algorithm is the optimal tradeoff
regarding the deployment cost and performance, but is
prohibitively expensive in computation overhead.

Setup. Our experiments are conducted in a 4-core virtual
machine running on a host with Intel Xeon(R) 3.20GHz
CPU and 6G memory.

5.2 Policy Performance

When comparing the stepwise cloud selection
algorithm with the algorithms mentioned above, we want
to see how the number of application components and the
number of data centers impact the results. We keep one
value fixed while increasing the other value in our
experiments. For example, in the first set of experiment,
the number of the application component increases from
4 to 10, with the number of the data centers constantly to
be 10. Also, in the second set of experiments, the number
of application component is fixed to be 8, while the
number of data centers varies from 10 to 20. The upper
bound of the number of application components and data
centers in the experiments is determined by the large

execution time of the optimal placement algorithm
(Section IV-C shows results on this). In addition, in order
to see how the weight of the deployment cost and the
proximity would affect the results, we conduct these
experiments in three different cases, each with weights -
 as 0.3-0.7, 0.5-0.5 and 0.7-0.3 respectively.

Figure 4-9 show the performance of different
placement algorithms. We can see that the performance
of the stepwise application placement algorithm is much
better than the random placement and is very close to the
optimality in many cases. Another interesting observation
is that the good performance persists regardless of the
weights for deployment cost and proximity.

5.3. Scalability

In this section, we evaluate the scalability of different
algorithms by showing the execution time. The
methodology in the experiments is the same with the
Section IV-B. Figure 10 and 15 show the execution time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10

O
ve

rh
ea

d
sc

or
e

Number of components

random placement (0.3-0.7)
stepwise placement (0.3-0.7)
optimal placement (0.3-0.7)

Fig 4. Performance varying component numbers (0.3-0.7)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10

O
ve

rh
ea

d
sc

or
e

Number of components

random placement (0.5-0.5)
stepwise placement (0.5-0.5)
optimal placement (0.5-0.5)

Fig 5. Performance varying component numbers (0.5-0.5)

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 422

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10

O
v
er

h
ea

d
 s

co
re

Number of components

random placement (0.7-0.3)
stepwise placement (0.7-0.3)
optimal placement (0.7-0.3)

Fig 6. Performance varying component numbers (0.7-0.3)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 11 12 13 14 15 16 17 18 19 20

O
v

er
h

ea
d

 s
co

re

Number of data center

random placement (0.3-0.7)
stepwise placement (0.3-0.7)
optimal placement (0.3-0.7)

Fig 7. Performance varying DC numbers (0.3-0.7)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 11 12 13 14 15 16 17 18 19 20

O
v

er
h

ea
d

 s
co

re

Number of data center

random placement (0.5-0.5)
stepwise placement (0.5-0.5)
optimal placement (0.5-0.5)

Fig 8. Performance varying DC numbers (0.5-0.5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 11 12 13 14 15 16 17 18 19 20

O
v
er

h
ea

d
 s

co
re

Number of data center

random placement (0.7-0.3)
stepwise placement (0.7-0.3)
optimal placement (0.7-0.3)

Fig 9. Performance varying DC numbers (0.7-0.3)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 5 6 7 8 9 10

T
im

e
(m

il
li

o
n
 s

ec
o
n
d
s)

Number of components

Large page: 100MLarge page: 100MLarge page: 100M

random placement (0.3-0.7)
stepwise placement (0.3-0.7)
optimal placement (0.3-0.7)

Fig 10. Run time varying component numbers (0.3-0.7)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 5 6 7 8 9 10

T
im

e
(m

il
li

o
n

 s
ec

o
n

d
s)

Number of components

Large page: 100MLarge page: 100MLarge page: 100M

random placement (0.5-0.5)
stepwise placement (0.5-0.5)
optimal placement (0.5-0.5)

Fig 11. Run time varying component numbers (0.5-0.5)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 4 5 6 7 8 9 10

T
im

e
(m

il
li

o
n
 s

ec
o
n
d
s)

Number of components

Large page: 100MLarge page: 100MLarge page: 100M

random placement (0.7-0.3)
stepwise placement (0.7-0.3)
optimal placement (0.7-0.3)

Fig 12. Run time varying component numbers (0.7-0.3)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

il
li

o
n
 s

ec
o
n
d
s)

Number of dconents

Large page: 100MLarge page: 100MLarge page: 100M

random placement (0.3-0.7)
stepwise placement (0.3-0.7)
optimal placement (0.3-0.7)

Fig 13. Run time varying DC numbers (0.3-0.7)

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 423

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

il
li

o
n
 s

ec
o
n
d
s)

Number of dconents

random placement (0.5-0.5)
stepwise placement (0.5-0.5)
optimal placement (0.5-0.5)

Fig 14. Run time varying DC numbers (0.3-0.7)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

il
li

o
n

 s
ec

o
n

d
s)

Number of dconents

random placement (0.7-0.3)
stepwise placement (0.7-0.3)
optimal placement (0.7-0.3)

Fig 15. Run time varying DC numbers (0.3-0.7)

of the algorithms. We can see that the execution time of
the optimal placement algorithm is exponential (noting
the log scale of the figures), while the execution time of
the stepwise placement algorithm stays near 1 million
second, similar with the random placement algorithm.
Thus, the proposed stepwise placement algorithm is very
efficient in calculating the placement policies for the
selection of cloud infrastructures.

V. RELATED WORK Cloud computing has obtained
tremendous attention recently. Among the large volume
of works, several of them focus on the comparing and
selecting the cloud services. For example, the work in [17,
18] compared the service performance of four major
cloud providers to help the customers choose cloud
services. In [13], a conceptional framework is proposed
to compare the cloud services based on the performance
of virtual machines. Unlike their work, we take the
proximity into account and aim to build a system to select
the cloud infrastructures automatically for customers. In
[34], we consider the proximity in the cloud selection and
did some preliminary investigation of the problem.

Meanwhile, authors in [24] introduced a mathematical
formulation and method of the cloud service selection
based on multiple abstract criteria. Different from it, our
work intends to develop a real system to automatically
selection the infrastructures in IaaS cloud platforms. In
[11], an approach utilizing the analytic hierarchy process
is proposed to select the services for software as a service
cloud. Our work differentiate from them in that we focus

on the infrastructure as a service cloud, in which the
proximity should be considered explicitly, while in
software as a service cloud, only the overall service
quality needs to be considered. Finally, many works
focus on the storage issues, like storage selection,
security, storage backup and deduplication etc., such as
[25, 14, 8, 30], and network issues, like [26, 20].
Different from them, this work considers the general
applications. The work in [35] proposes a unified
approach for the application placement and demand
distribution problems in global cloud and shows great
promises in the optimization of the cloud platforms.

In addition, to our knowledge, this work is the first
one to consider the proximity and interaction between
application components and different applications when
making the selection of cloud services.

6. Conclusion and future work

In this paper, we design and evaluate our system for
cloud service selection in IaaS platforms. We not only
consider the deployment cost, but also take into account
the location of cloud infrastructures, application clients,
related applications as well as the interaction among the
application components. Through experiments, we show
that our proposed system is very efficient to calculate a
placement policy with performance very close to the
optimality.

In our future work, it is interesting to investigate more
complex methodologies, such as genetic algorithms [9]
and neural networks [27, 31], to solve the problem. Also,
we would consider the energy-related problems in cloud
environment.

References

[1]http://condor.depaul.edu/rjohnson/source/graph_ge.c.
[2]http://en.wikipedia.org/wiki/content_delivery_network.
[3] http://mirage.cs.uoregon.edu/p2p/snapshots.html.
[4] http://www.planet-lab.org.
[5] Integer programming. http://en.wikipedia.org/wiki/i
nteger programming.
[6] Daniel Bauer, Sean Rooney, and Paolo Scotton. Net-
work infrastructure for massively distributed games. In
NetGames. ACM, 2002.
[7] Peter Desnoyers, Timothy Wood, Prashant Shenoy, Rahul
Singh, Sangameshwar Patil, and Harrick Vin. Modellus:
Automated modeling of complex internet data center
applications. In Trans. Web. ACM, 2012.
[8] Fred Douglis, Deepti Bhardwaj, Hangwei Qian, and Philip
Shilane. Content-aware load balancing for distributed backup.
In LISA. USENIX, 2011.
[9] Stephanie Forrest. Genetic algorithms. In ACM Comput.Surv.
ACM, 1996.
[10] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny
Raz, Yuval Shavitt, and Lixia Zhang. Idmaps: a global internet
host distance estimation service. In IEEE/ACM Trans. Netw.
IEEE Press, 2001.
[11] Manish Godse and Shrikant Mulik. An approach for
selecting software-as-a-service (saas) product. In CLOUD.
IEEE, 2009.
[12] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Grib-
ble. King: estimating latency between arbitrary internet end
hosts. In IMW. ACM, 2002.

Hangwei Qian et al., ACSA, Vol. 2, No. 3, pp. 416-424, 2013 424

[13] Seung-Min Han, Mohammad Mehedi Hassan, Chang
Woo Yoon, and Eui-Nam Huh. Efficient service recom
mendation system for cloud computing market. In ICIS. ACM,
2009.
[14] Seny Kamara and Kristin Lauter. Cryptographic cloud
storage. In FC. Springer, 2010.
[15] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and
Archan Misra. Matrix: adaptive middleware for dis tributed
multiplayer games. In Middleware, 2005.
[16] B. Krishnamurthy and J. Wang. On network-aware
clustering of web clients. In ACM SIGCOMM, 2000.
[17] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.
Cloudcmp: comparing public cloud providers. In IMC. ACM,
2010.
[18] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.
Cloudcmp: shopping for a cloud made easy. In HotCloud.
USENIX, 2010.
[19] Where Amazons Data Centers Are Located.
http://www.datacenterknowledge.com/archives/2008/11/1
8/where-amazons-data-centers-are-located/.
[20] Hangwei Qian, Chenghua Cao, Li Liu, Hualong Zu, Qixin
Wang, Menghui Li, and Tao Lin. Exploring the network scale-
out in virtualized servers. In International Conference on Soft
Computing and Software Engineer ing. Advanced Academic
Publisher, 2013.
[21] Hangwei Qian and Qian Lv. Proximity-aware Cloud
Selection and Virtual Machine Allocation in IaaS Cloud
Platforms. In International Workshop on Internet-based Virtual
Computing Environment. IEEE, 2013.
[22] Hangwei Qian, Elliot Miller, Wei Zhang, Michael
Rabinovich, and Craig E. Wills. Agility in virtualized utility
computing. In VTDC, 2007.
[23] Hangwei Qian, Michael Rabinovich, and Zakaria Al-
Qudah. Bringing local dns servers close to their clients. In
GLOBECOM, 2011.
[24] Zia ur Rehman, Farookh K. Hussain, and Omar K. Hussain.
Towards multi-criteria cloud service selection. In IMIS. IEEE,
2011.
[25] Arkaitz Ruiz-Alvarez and Marty Humphrey. An auto
mated approach to cloud storage service selection. In
ScienceCloud. ACM, 2011.
[26] Seetharami R. Seelam and Patricia J. Teller. Virtual I/O
scheduler: a scheduler of schedulers for performance

virtualization. In VEE. ACM, 2007.
[27] Alexei N. Skurihin. Neural networks in j. In Proceedings of
the international conference on APL. ACM, 1992.
[28] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise
data centers. In WWW, 2007.
[29] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy,
Mike Spreitzer, and Asser Tantawi. An analytical model for
multi-tier internet services and its applications. In
SIGMETRICS. ACM, 2005.
[30] Grant Wallace, Fred Douglis, Hangwei Qian, Philip
Shilane, Stephen Smaldone, Mark Chamness, and Windsor Hsu.
Characteristics of backup workloads in production systems. In
FAST. USENIX, 2012.
[31] Qixin Wang, Chenghua Cao, Menghui Li, Mingyi Gao, and
Hualong Zu. A new model based on grey theory and neural
network algorithm for evaluation of aids clinical trial. In
Advances in Computational Mathematics and its Applications,
2013.
[32] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and
Prashant Shenoy. Profiling and modeling re source usage of
virtualized applications. In Middleware. Springer, 2008.
[33] Hangwei Qian, Elliot Miller, Wei Zhang, Michael
Rabinovich and Craig E Wills. Agile resource management in a
virtualized data center. In ACM WOSP/SIPEW, 2010.
[34] Hangwei Qian, Hualong Zu, Chenghua Cao, and Qixin
Wang. CSS: Facilitate the cloud service selection in iaas
platforms. In CTS, IEEE, 2013.
[35] Hangwei Qian and Michael Rabinovich. Application
Placement and Demand Distribution in a Global Elastic Cloud:
A Unified Approach. In ICAC, USENIX, 2013.
[36] Qixin Wang, Yang Liu, Xiaochuan Pan (2008),
Atmosphere pollutants and mortality rate of respiratory diseases
in Beijing, Science of the Total Environment, Vol.391 No.1,
pp143-148.
[37] Qixin Wang, Menghui Li, Li Charlie Xia, Ge Wen,
Hualong Zu, Mingyi Gao (2013), Genetic Analysis of
Differentiation of T-helper lymphocytes, Genetics and
Molecular Research, Vol.12, No.2, PP. 972 – 987
[38] Qixin Wang, Menghui Li, Hualong Zu, Mingyi Gao,
Chenghua Cao, Li Charlie Xia(2013), A Quantitative
Evaluation of Health Care System in US, China, and Sweden,
HealthMED, Vol.7, No.4, PP. 1064-1074

